Abstract

BackgroundAssociative high-frequency electrical stimulation (HFS) of the supraorbital nerve in five healthy individuals induced long-term potentiation (LTP)-like or depression (LTD)-like changes in the human blink reflex circuit according to the rules of spike timing-dependent plasticity (Mao and Evinger, 2001). HFS given at the onset of the R2 component of the blink reflex (HFSLTP) produced a lasting facilitation of the R2, whereas HFS given shortly before R2 (HFSLTD) caused a lasting suppression of the R2. In patients with benign essential blepharospasm (BEB), a focal dystonia affecting the orbicularis oculi muscles, HFSLTP induced excessive LTP-like associative plasticity relative to healthy controls, which was normalized after botulinum toxin (BTX) injections (Quartarone et al, 2006).Methodology/Principal FindingsWe used HFS conditioning of the supraorbital nerve to study homeostatic metaplasticity of the blink reflex circuit in healthy subjects and dystonic patients. On separate days, we tested the conditioning effects on the R2 response and paired-pulse R2 inhibition after (i) HFSLTP, (ii) HFSLTP followed by HFSLTP, and (iii) HFSLTP followed by HFSLTD. Controls also received (iv) HFSLTD alone and (v) a non-intervention protocol. In BEB patients, HFSLTP followed by HFSLTD was given before and after BTX treatment. We were not able to replicate the bidirectional timing-dependent effects of HFSLTP and HFSLTD alone. All HFS protocols produced a non-specific reduction of the R2 response and a relative decrease in paired-pulse inhibition. These R2 changes also occurred in controls when no HFS was applied. There was also no trace of a homeostatic response pattern in BEB patients before or after BTX treatment.Conclusion/SignificanceOur data challenge the efficacy of associative HFS to produce bidirectional plasticity in the human blink reflex circuit. The non-specific decrease of the R2 response might indicate habituation of the blink reflex following repeated electrical supraorbital stimulation. The increase of inhibition after paired pulse stimulation might reflect homeostatic behaviour to prevent further down regulation of the R2 response to preserve the protection of this adverse-effects reflex.

Highlights

  • Synaptic plasticity refers to lasting changes in synaptic strength [1]

  • We further evaluated homeostatic control by combining two facilitory protocols (HFSLTP followed by HFSLTP) and facilitory with inhibitory interventions (HFSLTP followed by HFSLTD) (Fig. 1)

  • In the HFSLTP protocol, the mean Blepharospasm Rating Scale (BRS) was 11.5564.85 points, the Blepharospasm Disability Scale (BDS) 76.78613.00%, and the blink rate 31.45613.99 blinks before and 30.56618.04 blinks after the session (p.0.6)

Read more

Summary

Introduction

Synaptic plasticity refers to lasting changes in synaptic strength [1]. Synaptic strength is bidirectional modifiable by different patterns of presynaptic activity [1]. According to the learning rule introduced by Hebb [2], the synaptic connection between two neurons is strengthened if the firing of the presynaptic neuron is repeatedly and persistently paired with firing of the postsynaptic neuron. This idea has been refined in terms of temporal specificity [3] leading to the bidirectional rule of spike timing-dependent plasticity (STDP), which can be summarized as follows: synapses in which the presynaptic input precedes postsynaptic firing become strengthened (long-term potentiation (LTP)), whereas synapses in which presynaptic input follows postsynaptic firing become weakened (long term depression (LTD)) [4]. In patients with benign essential blepharospasm (BEB), a focal dystonia affecting the orbicularis oculi muscles, HFSLTP induced excessive LTP-like associative plasticity relative to healthy controls, which was normalized after botulinum toxin (BTX) injections (Quartarone et al, 2006)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call