Abstract

Conversion of temporal to spatial correlations in the cortex is one of the most intriguing functions in the brain. The learning at synapses triggering the correlation conversion can take place in a wide integration window, whose influence on the correlation conversion remains elusive. Here we propose a generalized associative memory model of pattern sequences, in which pattern separations within an arbitrary Hebbian length are learned. The model can be analytically solved, and predicts that a small Hebbian length can already significantly enhance the correlation conversion, i.e., the stimulus-induced attractor can be highly correlated with a significant number of patterns in the stored sequence, thereby facilitating state transitions in the neural representation space. Moreover, an anti-Hebbian component is able to reshape the energy landscape of memories, akin to the memory regulation function during sleep. Our work thus establishes the fundamental connection between associative memory, Hebbian length, and correlation conversion in the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call