Abstract

Here, we develop and investigate a computational model of a network of cortical neurons on the base of biophysically well constrained and tested two-compartmental neurons developed by Pinsky and Rinzel [Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1, 39–60]. To study associative memory, we connect a pool of cells by a structured connectivity matrix. The connection weights are shaped by simple Hebbian coincidence learning using a set of spatially sparse patterns. We study the neuronal activity processes following an external stimulation of a stored memory. In two series of simulation experiments, we explore the effect of different classes of external input, tonic and flashed stimulation. With tonic stimulation, the addressed memory is an attractor of the network dynamics. The memory is displayed rhythmically, coded by phase-locked bursts or regular spikes. The participating neurons have rhythmic activity in the gamma-frequency range (30–80 Hz). If the input is switched from one memory to another, the network activity can follow this change within one or two gamma cycles. Unlike similar models in the literature, we studied the range of high memory capacity (in the order of 0.1 bit/synapse), comparable to optimally tuned formal associative networks. We explored the robustness of efficient retrieval varying the memory load, the excitation/inhibition parameters, and background activity. A stimulation pulse applied to the identical simulation network can push away ongoing network activity and trigger a phase-locked association event within one gamma period. Unlike as under tonic stimulation, the memories are not attractors. After one association process, the network activity moves to other states. Applying in close succession pulses addressing different memories, one can switch through the space of memory patterns. The readout speed can be increased up to the point where in every gamma cycle another pattern is displayed. With pulsed stimulation, bursts become relevant for coding, their occurrence can be used to discriminate relevant processes from background activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.