Abstract

AbstractIn this paper, discrete-time cellular neural networks with one-dimensional space invariant are designed to associative memories. The obtained results enable both heteroassociative and autoassociative memories to be synthesized by assuring the global asymptotic stability of the equilibrium point and the feeding data via external inputs rather than initial conditions. It is shown that criteria herein can ensure the designed input matrix to be obtained by using one-dimensional space-invariant cloning template. Finally, one specific example is included to demonstrate the applicability of the methodology.KeywordsAssociative MemoryRecurrent Neural NetworkCellular Neural NetworkGlobal Asymptotic StabilityGlobal Exponential StabilityThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.