Abstract

SummaryResponsive and shape-memory materials allow stimuli-driven switching between fixed states. However, their behavior remains unchanged under repeated stimuli exposure, i.e., their properties do not evolve. By contrast, biological materials allow learning in response to past experiences. Classical conditioning is an elementary form of associative learning, which inspires us to explore simplified routes even for inanimate materials to respond to new, initially neutral stimuli. Here, we demonstrate that soft actuators composed of thermoresponsive liquid crystal networks “learn” to respond to light upon a conditioning process where light is associated with heating. We apply the concept to soft microrobotics, demonstrating a locomotive system that “learns to walk” under periodic light stimulus, and gripping devices able to “recognize” irradiation colors. We anticipate that actuators that algorithmically emulate elementary aspects of associative learning and whose sensitivity to new stimuli can be conditioned depending on past experiences may provide new routes toward adaptive, autonomous soft microrobotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.