Abstract

This paper presents a complete formulation of a model of coupled associative thermoplasticity at finite strains, addresses in detail the numerical analysis aspects involved in its finite element implementation, and assesses the performance of the proposed mechanical and finite element models in a comprehensive set of numerical simulations. On the thermomechanical side, novel aspects of the proposed model of thermoplasticity are (1) the explicit characterization of the plastic (configurational) entropy as an independent internal variable, (2) a thermomechanical extension of the principle of maximum dissipation consistent with the multiplicative decomposition of the deformation gradient, and (3) the exploitation of this extended principle in the formulation of an associative flow which characterizes the evolution of the plastic entropy in terms of the change of the flow criterion with respect to temperature. On the numerical analysis side, salient features of the proposed approach are (4) a new global product formula algorithm constructed via an operator split of the nonlinear initial value problem, which leads to a two-step solution procedure, (5) a unified class of local return mapping algorithms which preserves exactly the incompressibility constraint on the plastic flow and reduces to the classical radial return method for isothermal J 2- flow theory, and (6) the formulation of a mixed finite element method in terms of the elastic entropy and the temperature field which circumvents well-known difficulties associated with the incompressibility constraint on the plastic flow. The exact linearization of both the product formula algorithm and an alternative simulataneous solution scheme for the coupled thermomechanical problem is given in two appendices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call