Abstract

A cellular analog of associative learning has been demonstrated in individual sensory neurons of the tail withdrawal reflex of Aplysia. Sensory cells activated by intracellular current injection shortly before a sensitizing shock to the animal's tail display significantly more facilitation of their monosynaptic connections to a tail motor neuron than cells trained either with intracellular stimulation unpaired to tail shock or with tail shock alone. This associative effect is acquired rapidly and is expressed as a temporally specific amplification of heterosynaptic facilitation. The results suggest that activity-dependent neuromodulation may be a mechanism underlying associative information storage and point to aspects of subcellular processes that might be involved in the formation of neural associations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.