Abstract

The capacity to learn new efficient systemic behavior is a fundamental issue of contemporary biology. We have recently observed, in a preliminary analysis, the emergence of conditioned behavior in some individual amoebae cells. In these experiments, cells were able to acquire new migratory patterns and remember them for long periods of their cellular cycle, forgetting them later on. Here, following a similar conceptual framework of Pavlov’s experiments, we have exhaustively studied the migration trajectories of more than 2000 individual cells belonging to three different species: Amoeba proteus, Metamoeba leningradensis, and Amoeba borokensis. Fundamentally, we have analyzed several relevant properties of conditioned cells, such as the intensity of the responses, the directionality persistence, the total distance traveled, the directionality ratio, the average speed, and the persistence times. We have observed that cells belonging to these three species can modify the systemic response to a specific stimulus by associative conditioning. Our main analysis shows that such new behavior is very robust and presents a similar structure of migration patterns in the three species, which was characterized by the presence of conditioning for long periods, remarkable straightness in their trajectories and strong directional persistence. Our experimental and quantitative results, compared with other studies on complex cellular responses in bacteria, protozoa, fungus-like organisms and metazoans that we discus here, allow us to conclude that cellular associative conditioning might be a widespread characteristic of unicellular organisms. This new systemic behavior could be essential to understand some key principles involved in increasing the cellular adaptive fitness to microenvironments.

Highlights

  • An essential question of cellular behavior is to know if individual cells are capable of learning, thereby acquiring new adaptive systemic patterns to respond to changes in the external medium.Associative learning and memory are fundamental cognitive properties of multicellular organisms endowed with nervous systems to obtain critical information for survival, developing new complex behavior by the association of different stimuli and/or responses

  • In continuation of this research and following a similar conceptual framework of Pavlov’s experiments, we have studied here the migration trajectories of more than 2000 individual cells belonging to three different species (Amoeba proteus, sp., Metamoeba leningradensis, sp. and Amoeba borokensis, sp.)

  • The values of the displacement cosines ranged between −1 and 1 (A. proteus: 0.984/0.068, median/IQ; M. leningradensis: 0.994/0.02, median/IQ; A. borokensis: 0.97/0.097, median/IQ) which confirmed that a fundamental behavior characterized by an unequivocal directionality toward the cathode had emerged under these galvanotactic conditions

Read more

Summary

Introduction

An essential question of cellular behavior is to know if individual cells are capable of learning, thereby acquiring new adaptive systemic patterns to respond to changes in the external medium.Associative learning (the emergence of behavioral modifications associated with new specific external stimuli) and memory are fundamental cognitive properties of multicellular organisms endowed with nervous systems to obtain critical information for survival, developing new complex behavior by the association of different stimuli and/or responses. We have quantitatively analyzed the behavior of these conditioned cells by studying the intensity of the locomotion responses, the directionality persistence, the persistence times, and several kinematic properties of the cell migration trajectories under conditioning such as the total distance traveled, the directionality ratio and the average speed. This exhaustive quantitative analysis unequivocally showed that the cellular conditioned behavior is robust, and according to the parameters here analyzed, these three species presented a similar motion structure characterized by the presence of conditioning for long periods, strong straightness in their trajectories, and high directional persistence. After the induction process (simultaneous galvanotaxis and chemotaxis), the three species exhibited the capacity to generate a new type of systemic motility pattern that prevailed for 40 min on average

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call