Abstract

Associative classification which uses association rules for classification has achieved high accuracy in comparison with other classification approaches. However, the confidence measure which is conventionally used for selecting association rules for classification may not conform to the prediction accuracy of the rules. In this paper, we propose a measure called prediction confidence to measure the prediction accuracy of association rules. In addition, a probabilistic-based approach for estimating prediction confidence of association rules is given and its performance is evaluated. The use of prediction confidence helps improve the performance of associative classifiers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.