Abstract
Organophosphate esters (OPEs) are ubiquitously detected in environments and their exposure may affect respiratory health. However, epidemiological evidence, particularly among adolescents, is very limited. We aimed to investigate the associations of urinary OPEs metabolites with asthma and lung function among adolescents and to identify potential effect modifiers. Included were 715 adolescents aged 12-19 years old participating in the National Health and Nutrition Examination Survey (NHANES) 2011-2014. Multivariable binary logistic regression and linear regression were used to assess associations with asthma and lung function, respectively. Stratified analyses were conducted to assess the effect modifications of serum sex hormones, vitamin D levels, and body mass index (BMI). After multivariable adjustment, we found that bis(2-chloroethyl) phosphate (BCEP) (3rd tertile [T3] vs 1st tertile [T1], OR = 1.87, 95% CI: 1.08, 3.25; P-trend=0.029) and diphenyl phosphate (DPHP) (T3 vs T1, OR = 2.52, 95%CI: 1.25, 5.04; P-trend=0.013) were associated with elevated odds of asthma in all adolescents. Sex-stratified analyses revealed that associations of these two OPEs metabolites tended to be stronger in males. Meanwhile, BCEP and the molecular sum of OPEs metabolites (∑OPEs) were significantly associated with declined lung function, either in all adolescents or by sex. Furthermore, stratified analyses revealed that positive associations of OPEs metabolites with asthma tended to be stronger among adolescents with insufficient levels of Vitamin D (VD < 50 nmol/L), relatively high levels of total testosterone (≥356 ng/dL and ≥22.5 ng/dL for males and females, respectively), or low levels of estradiol (<19.1 pg/mL and <47.3 pg/mL for males and females, respectively). Certain urinary OPEs metabolites, especially DPHP and BCEP, were associated with elevated odds of asthma and declined lung function in adolescents. Such associations might be partly modified by levels of VD and sex steroid hormones. The observed associations of urinary OPEs metabolites with increased risk of asthma and declined lung function highlight the potential hazard of OPEs exposure to respiratory health among adolescents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of exposure science & environmental epidemiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.