Abstract

BackgroundLiterature suggests that maternal exposure to persistent organic pollutants (POPs) may influence child neurodevelopment. Evidence linking prenatal POPs and autism spectrum disorder has been inconclusive and few studies have examined the mixture effect of the POPs on autism-related traits. ObjectiveTo evaluate the associations between prenatal exposure to a mixture of POPs and autism-related traits in children from the Early Autism Risk Longitudinal Investigation study. MethodsMaternal serum concentrations of 17 POPs (11 polychlorinated biphenyls [PCBs], 4 polybrominated diphenyls [PBDEs], and 2 persistent pesticides) in 154 samples collected during pregnancy were included in this analysis. We examined the independent associations of the natural log-transformed POPs with social, cognitive, and behavioral traits at 36 months of age, including Social Responsiveness Scale (SRS), Mullen Scales of Early Learning-Early Learning Composite (MSEL-ELC), and Vineland Adaptive Behavior Scales (VABS) scores, using linear regression models. We applied Bayesian kernel machine regression and quantile g-computation to examine the joint effect and interactions of the POPs. ResultsHigher ln-PBDE47 was associated with greater deficits in social reciprocity (higher SRS score) (β = 6.39, 95% CI: 1.12, 11.65) whereas higher ln-p,p’-DDE was associated with lower social deficits (β = −8.34, 95% CI: −15.32, −1.37). Positive associations were observed between PCB180 and PCB187 and cognitive (MSEL-ELC) scores (β = 5.68, 95% CI: 0.18, 11.17; β = 4.65, 95% CI: 0.14, 9.17, respectively). Adaptive functioning (VABS) scores were positively associated with PCB170, PCB180, PCB187, PCB196/203, and p,p’-DDE. In the mixture analyses, we did not observe an overall mixture effect of POPs on the quantitative traits. Potential interactions between PBDE99 and other PBDEs were identified in association with MSEL-ELC scores. ConclusionsWe observed independent effects of PCB180, PCB187, PBDE47, and p,p’ DDE with ASD-related quantitative traits and potential interactions between PBDEs. Our findings highlight the importance of assessing the effect of POPs as a mixture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.