Abstract

BackgroundAgeing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power—which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross‐sectional muscle area (CSMA) with bone outcomes at the radius and tibia.MethodsWhite European, Black Afro‐Caribbean, and South Asian men aged 40–79 years were recruited from Manchester, UK. Cortical bone mineral content, cross‐sectional area, cortical area, cross‐sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two‐legged jump performed on a ground‐reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity.ResultsThree hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P < 0.0001). There was a significant age–ethnicity interaction for jump power (P = 0.039); after adjustments, this was attenuated (P = 0.088). For every 10 year increase in age, grip strength decreased by 11%. Jump force was positively associated with tibial bone outcomes: a 1 standard deviation greater jump force was associated with significantly higher cortical bone mineral content 3.1%, cross‐sectional area 4.2%, cortical area 3.4%, and cross‐sectional moment of inertia 6.8% (all P < 0.001). Cross‐sectional muscle area of the lower leg was not associated with tibial bone outcomes. Both grip strength and CSMA of the arm were positively associated, to a similar extent, with radius diaphyseal bone outcomes.ConclusionsJump force and power are negatively associated with age in UK men. In the lower limb, the measurement of jump force is more strongly related to bone outcomes than CSMA. It is important to consider jump force and power when understanding the aetiology of bone loss and mobility in ageing men.

Highlights

  • Ageing is associated with sarcopenia, loss of muscle strength, osteoporosis, and increased fall risk, all of which contribute to an increased risk of fracture.[1,2] Muscle strength includes the amount of muscle and anatomy, force, and power.[3]

  • Muscle force, power, cross-sectional muscle area (CSMA) and bone geometry in older UK men Ageing is associated with sarcopenia, loss of muscle strength, osteoporosis, and increased fall risk, all of which contribute to an increased risk of fracture.[1,2]

  • Muscle mass, measured from dual energy X-ray absorptiometry scans or cross-sectional muscle area (CSMA) derived from peripheral quantitative computed tomography scans are often used as a surrogate for muscle force

Read more

Summary

Introduction

Ageing is associated with sarcopenia, loss of muscle strength, osteoporosis, and increased fall risk, all of which contribute to an increased risk of fracture.[1,2] Muscle strength includes the amount of muscle (mass) and anatomy (type and distribution of muscle fibres), force (the product of mass and acceleration), and power.[3] Muscle mass, measured from dual energy X-ray absorptiometry scans or cross-sectional muscle area (CSMA) derived from peripheral quantitative computed tomography (pQCT) scans are often used as a surrogate for muscle force. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.