Abstract

ObjectiveTo investigate the characteristics and associations of MRI-visible perivascular spaces (PVS) with clinical progression and longitudinal cognitive decline across the Alzheimer’s disease spectrum.MethodsWe included 1429 participants (641 [44.86%] female) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. PVS number and grade in the centrum semiovale (CSO-PVS), basal ganglia (BG-PVS), and hippocampus (HP-PVS) were compared among the control (CN), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) groups. PVS were tested as predictors of diagnostic progression (i.e., CN to MCI/AD or MCI to AD) and longitudinal changes in the 13-item Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-Cog 13), Mini-Mental State Examination (MMSE), memory (ADNI-MEM), and executive function (ADNI-EF) using multiple linear regression, linear mixed-effects, and Cox proportional hazards modeling.ResultsCompared with CN subjects, MCI and AD subjects had more CSO-PVS, both in number (p < 0.001) and grade (p < 0.001). However, there was no significant difference in BG-PVS and HP-PVS across the AD spectrum (p > 0.05). Individuals with moderate and frequent/severe CSO-PVS had a higher diagnostic conversion risk than individuals with no/mild CSO-PVS (log-rank p < 0.001 for all) in the combined CN and MCI group. Further Cox regression analyses revealed that moderate and frequent/severe CSO-PVS were associated with a higher risk of diagnostic conversion (HR = 2.007, 95% CI = 1.382–2.914, p < 0.001; HR = 2.676, 95% CI = 1.830–3.911, p < 0.001, respectively). A higher CSO-PVS number was associated with baseline cognitive performance and longitudinal cognitive decline in all cognitive tests (p < 0.05 for all).ConclusionsCSO-PVS were more common in MCI and AD and were associated with cognitive decline across the AD spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call