Abstract

BackgroundAssociations between metabolic status and metabolic changes with the risk of cardiovascular outcomes have been reported. However, the role of genetic susceptibility underlying these associations remains unexplored. We aimed to examine how metabolic status, metabolic transitions, and genetic susceptibility collectively impact cardiovascular outcomes and all-cause mortality across diverse body mass index (BMI) categories.MethodsIn our analysis of the UK Biobank, we included a total of 481,576 participants (mean age: 56.55; male: 45.9%) at baseline. Metabolically healthy (MH) status was defined by the presence of < 3 abnormal components (waist circumstance, blood pressure, blood glucose, triglycerides, and high-density lipoprotein cholesterol). Normal weight, overweight, and obesity were defined as 18.5 ≤ BMI < 25 kg/m2, 25 ≤ BMI < 30 kg/m2, and BMI ≥ 30 kg/m2, respectively. Genetic predisposition was estimated using the polygenic risk score (PRS). Cox regressions were performed to evaluate the associations of metabolic status, metabolic transitions, and PRS with cardiovascular outcomes and all-cause mortality across BMI categories.ResultsDuring a median follow-up of 14.38 years, 31,883 (7.3%) all-cause deaths, 8133 (1.8%) cardiovascular disease (CVD) deaths, and 67,260 (14.8%) CVD cases were documented. Among those with a high PRS, individuals classified as metabolically healthy overweight had the lowest risk of all-cause mortality (hazard ratios [HR] 0.70; 95% confidence interval [CI] 0.65, 0.76) and CVD mortality (HR 0.57; 95% CI 0.50, 0.64) compared to those who were metabolically unhealthy obesity, with the beneficial associations appearing to be greater in the moderate and low PRS groups. Individuals who were metabolically healthy normal weight had the lowest risk of CVD morbidity (HR 0.54; 95% CI 0.51, 0.57). Furthermore, the inverse associations of metabolic status and PRS with cardiovascular outcomes and all-cause mortality across BMI categories were more pronounced among individuals younger than 65 years (Pinteraction < 0.05). Additionally, the combined protective effects of metabolic transitions and PRS on these outcomes among BMI categories were observed.ConclusionsMH status and a low PRS are associated with a lower risk of adverse cardiovascular outcomes and all-cause mortality across all BMI categories. This protective effect is particularly pronounced in individuals younger than 65 years. Further research is required to confirm these findings in diverse populations and to investigate the underlying mechanisms involved.Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.