Abstract

Evidence on the effect of long-term exposure to fine particulate matter (PM2.5) on erythrocytosis and thrombocytosis prevalence was limited. We aimed to investigate the association of PM2.5 and its constituents with the risks of erythrocytosis and thrombocytosis. The present study included a total of 33,585 participants from the Henan Rural Cohort at baseline between 2015 and 2017. A hybrid satellite-based model was employed to estimate the concentrations of PM2.5 mass and its constituents (including black carbon [BC], nitrate [NO3-], ammonium [NH4+], inorganic sulfate [SO42-], organic matter [OM], and soil particles [SOIL]). The logistic regression model was used to assess the associations of single exposure to PM2.5 and its constituents with the risks of erythrocytosis and thrombocytosis, and the quantile G-computation method was applied to evaluate their joint exposure risk. For the independent association, the odds ratios for erythrocytosis/thrombocytosis with 1 μg/m3 increase was 1.049/1.043 for PM2.5 mass, 1.596/1.610 for BC, 1.410/1.231 for NH4+, 1.205/1.139 for NO3-, 1.221/1.359 for OM, 1.300/1.143 for SO42-, and 1.197/1.313 for SOIL. Joint exposure to PM2.5 and its components was also positively associated with erythrocytosis and thrombocytosis. The estimated weight of NH4+ was found to be the largest for erythrocytosis, while OM had the largest weight for thrombocytosis. PM2.5 mass and its constituents were positively linked to prevalent erythrocytosis and thrombocytosis, both in single-exposure and joint-exposure models. Additionally, NH4+/OM was identified as a potentially responsible component for the association between PM2.5 and erythrocytosis/thrombocytosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.