Abstract

Prior research has reported that perfluoroalkyl and polyfluoroalkyl substances (PFAS) may be linked to impaired glucose homeostasis in pregnant women. However, few studies have investigated PFAS alternatives and isomers, and even less is known about the association among women conceiving through assisted reproductive technology (ART). The prospective cohort study aimed to explore associations of legacy PFAS, alternatives and isomers with gestational diabetes mellitus (GDM) and glucose homeostasis during pregnancy among 336 women conceiving through ART. Nineteen PFAS, including nine linear legacy PFAS, four short-chain alternatives, four branched isomers, and two emerging PFAS alternatives, were determined in first-trimester maternal serum. Fasting plasma glucose (FPG), 1-h and 2-h glucose concentrations following the oral glucose tolerance test (OGTT), and glycated hemoglobin (HbA1c) were measured during the second trimester. After adjusting for confounding variables, nearly half of individual PFAS (10/19) and PFAS mixtures were correlated with increased GDM risk or elevated 2-h glucose levels. Among PFAS congeners, emerging PFAS alternatives, chlorinated perfluoroalkyl ether sulfonic acids (Cl-PFESAs), showed a notable association with impaired glucose homeostasis. For example, 6:2 Cl-PFESA exhibited a correlation with GDM (OR = 1.31, 95% CI = 1.02, 1.68) and 2-h glucose concentrations (β = 0.22, 95% CI = 0.08, 0.36), and contributed most to the overall association with 2-h glucose concentrations. Compared to those diagnosed with male factor infertility, the associations were more pronounced in infertile women with reproductive endocrine diseases. We provide evidence that exposure to PFAS, especially emerging PFAS alternatives, may impair glucose homeostasis and increase the risk of GDM among women conceiving through ART.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.