Abstract
Background. Approximately 5–10 % of cases of Parkinson’s disease (PD) are monogenic, in other cases the pathology has a multifactorial etiology. One of recognized pathogenetic pathways of PD is mitochondrial dysfunction, in particular the accumulation of damage in mitochondrial DNA. Hence, the genes of DNA repair proteins are promising candidate genes for multifactorial forms of PD.The aim. To study the involvement of genes of DNA repair proteins in the development of Parkinson’s disease.Materials and methods. The associative analysis was carried out while comparing a group of patients with PD (n = 133) with a Tomsk population sample (n = 344). SNaPshot analysis was used to study 8 SNPs in genes of DNA repair proteins (rs560191 (TP53BP1); rs1805800 and rs709816 (NBN); rs473297 (MRE11A); rs1189037 and rs1801516 (ATM); rs1799977 (MLH1); rs1805321 (PMS2)).Results. Common alleles and homozygous rs1801516 genotypes in the ATM gene predispose the development of PD (odds ratio (OR) – 3.27 (p = 0.000004) and OR = 3.46 (p = 0.00008) for risk alleles and genotype respectively) and rs1799977 in the MLH1 gene (OR = 1.88 (p = 0.0004) and OR = 2.42 (p = 0.00007) respectively); heterozygotes have a protective effect (OR = 0.33 (p = 0.0007) and OR = 0.46 (p = 0.0007) for ATM and MLH1, respectively). The rare rs1805800 allele in the NBN gene (OR = 1.62 (p = 0.019)) and a homozygous genotype for it (OR = 2.28 (p = 0.016)) also predispose to PD. Associations with PD of the ATM, MLH1, NBN genes were revealed for the first time.Conclusion. Mitochondrial dysfunction is one of the key factors in the pathogenesis of PD, while at least two of the three protein products of associated genes are involved in the development of mitochondrial dysfunction. Accordingly, it can be assumed that associated genes are involved in the pathogenesis of PD precisely through mitochondrial dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.