Abstract

Background — The development of systemic inflammation is a key pathogenetic mechanism in progression of chronic obstructive pulmonary disease (COPD). Fatty acids (FAs) and their oxidized derivatives serve as essential regulators of inflammation. The relationship between systemic inflammation and FA metabolism in COPD is poorly understood. In our research, we focused on examining the FA composition of the leukocyte membrane in COPD and the FA metabolism in association with systemic inflammation. Objective — We examined 137 patients with mild, moderate, or severe COPD. The control group comprised 32 healthy non-smokers. Methods — Blood cytokines and immune cell subpopulations were evaluated by flow cytometry. The FA composition of the leukocyte membranes was analyzed by gas chromatography. The concentrations of eicosanoids (thromboxane B2 (TXB2), leukotriene B4 (LTB4)) in plasma were measured by ELISA. Results — Our results implied systemic inflammation in all patients with COPD. The analysis of the FA composition of leukocyte membrane demonstrated increased level of saturated FAs and n-6 polyunsaturated fatty acids (PUFAs), along with reduced levels of monounsaturated FAs and n-3 PUFAs, in patients with COPD. The TXB2 and LTB4 content was increasing in COPD patients. We established a significant correlation with n-6 PUFAs, immune cells, and cytokines, which was indicative of an important role of FAs in the progress of systemic inflammation in COPD. Conclusion — Thus, FA modification of immune cells in patients with chronic pathologies of the bronchopulmonary system leads not only to disruption of the cell membrane structure, but also to the pathology of immune response regulation, and contributes to the development of the inflammatory process. The latter is a decisive factor in the pathogenesis of COPD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call