Abstract

BackgroundAccelerated growth in early childhood is an established risk factor for later obesity and cardiometabolic disease, but the relative importance of fat mass (FM) and fat-free mass (FFM) accretion is not well understood. We aimed to study how FM and FFM at birth and their accretion during infancy were associated with body composition and cardiometabolic risk markers at 5 years.Methods and findingsHealthy children born at term were enrolled in the Infant Anthropometry and Body Composition (iABC) birth cohort between December 2008 and October 2012 at Jimma University Specialized Hospital in the city of Jimma, Ethiopia. FM and FFM were assessed using air displacement plethysmography a median of 6 times between birth and 6 months of age. In 507 children, we estimated individual FM and FFM at birth and their accretion over 0–3 and 3–6 months of age using linear-spline mixed-effects modelling. We analysed associations of FM and FFM at birth and their accretion in infancy with height, waist circumference, FM, FFM, and cardiometabolic risk markers at 5 years using multiple linear regression analysis. A total of 340 children were studied at the 5-year follow-up (mean age: 60.0 months; girls: 50.3%; mean wealth index: 45.5 out of 100; breastfeeding status at 4.5 to 6 months post-partum: 12.5% exclusive, 21.4% almost exclusive, 60.6% predominant, 5.5% partial/none). Higher FM accretion in infancy was associated with higher FM and waist circumference at 5 years. For instance, 100-g/month higher FM accretion in the periods 0–3 and 3–6 months was associated with 339 g (95% CI: 243–435 g, p < 0.001) and 367 g (95% CI: 250–484 g, p < 0.001) greater FM at 5 years, respectively. Higher FM at birth and FM accretion from 0 to 3 months were associated with higher FFM and cholesterol concentrations at 5 years. Associations for cholesterol were strongest for low-density lipoprotein (LDL)–cholesterol, and remained significant after adjusting for current FM. A 100-g higher FM at birth and 100-g/month higher FM accretion from 0 to 3 months were associated with 0.16 mmol/l (95% CI: 0.05–0.26 mmol/l, p = 0.005) and 0.06 mmol/l (95% CI: 0.01–0.12 mmol/l, p = 0.016) higher LDL-cholesterol at 5 years, respectively. Higher FFM at birth and FFM accretion in infancy were associated with higher FM, FFM, waist circumference, and height at 5 years. For instance, 100-g/month higher FFM accretion in the periods 0–3 and 3–6 months was associated with 1,002 g (95% CI: 815–1,189 g, p < 0.001) and 624 g (95% CI: 419–829 g, p < 0.001) greater FFM at 5 years, respectively. We found no associations of FM and FFM growth with any of the other studied cardiometabolic markers including glucose, HbA1c, insulin, C-peptide, HOMA-IR, triglycerides, and blood pressure. Non-attendance at the 5-year follow-up visit was the main limitation of this study, which may have introduced selection bias and limited the power of the regression analyses.ConclusionsFM accretion in early life was positively associated with markers of adiposity and lipid metabolism, but not with blood pressure and cardiometabolic markers related to glucose homeostasis. FFM accretion was primarily related to linear growth and FFM at 5 years.

Highlights

  • Non-communicable diseases like type-2-diabetes and cardiovascular diseases are among the leading causes of death and disability worldwide [1,2]

  • We found no associations of fat mass (FM) and fat-free mass (FFM) growth with any of the other studied cardiometabolic markers including glucose, HbA1c, insulin, C-peptide, homeostasis model assessment of insulin resistance index (HOMA-IR), triglycerides, and blood pressure

  • FM accretion in early life was positively associated with markers of adiposity and lipid metabolism, but not with blood pressure and cardiometabolic markers related to glucose homeostasis

Read more

Summary

Introduction

Non-communicable diseases like type-2-diabetes and cardiovascular diseases are among the leading causes of death and disability worldwide [1,2]. Over the last 3 decades the research focus has shifted from the consequences of fetal growth restriction, indexed by low birth weight, to the harmful effects of childhood obesity and rapid early growth on a variety of later health outcomes including body size, body composition (BC), and the risk of cardiometabolic diseases. As many low- and middle-income countries are currently undergoing rapid nutritional transition and more than 80% of the global mortality burden of non-communicable diseases already occurs in low- and middle-income countries [11], it has become increasingly important to identify critical windows of growth associated with obesity and risk of cardiometabolic diseases in these populations. Accelerated growth in early childhood is an established risk factor for later obesity and cardiometabolic disease, but the relative importance of fat mass (FM) and fat-free mass (FFM) accretion is not well understood. We aimed to study how FM and FFM at birth and their accretion during infancy were associated with body composition and cardiometabolic risk markers at 5 years

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call