Abstract

BackgroundCirculating odd-chain fatty acids pentadecanoic (15:0) and heptadecanoic acid (17:0) are considered to reflect dairy intake. In cohort studies, higher circulating 15:0 and 17:0 were associated with lower type 2 diabetes risk. A recent randomized controlled trial in humans suggested that fiber intake also increased circulating 15:0 and 17:0, potentially resulting from fermentation by gut microbes. We examined the associations of dairy and fiber intake with circulating 15:0 and 17:0 in patients with a history of myocardial infarction (MI).MethodsWe performed cross-sectional analyses in a subsample of 869 Dutch post-MI patients of the Alpha Omega Cohort who had data on dietary intake and circulating fatty acids. Dietary intakes (g/d) were assessed using a 203-item food frequency questionnaire. Circulating 15:0 and 17:0 (as % of total fatty acids) were measured in plasma phospholipids (PL) and cholesteryl esters (CE). Spearman correlations (rs) were computed between intakes of total dairy, dairy fat, fiber, and circulating 15:0 and 17:0.ResultsPatients were on average 69 years old, 78% was male and 21% had diabetes. Total dairy intake comprised predominantly milk and yogurt (69%). Dairy fat was mainly derived from cheese (47%) and milk (15%), and fiber was mainly from grains (43%). Circulating 15:0 in PL was significantly correlated with total dairy and dairy fat intake (both rs = 0.19, p < 0.001), but not with dietary fiber intake (rs = 0.05, p = 0.11). Circulating 17:0 in PL was correlated both with dairy intake (rs = 0.14 for total dairy and 0.11 for dairy fat, p < 0.001), and fiber intake (rs = 0.19, p < 0.001). Results in CE were roughly similar, except for a weaker correlation of CE 17:0 with fiber (rs = 0.11, p = 0.001). Circulating 15:0 was highest in those with high dairy intake irrespective of fiber intake, while circulating 17:0 was highest in those with high dairy and fiber intake.ConclusionsIn our cohort of post-MI patients, circulating 15:0 was associated with dairy intake but not fiber intake, whereas circulating 17:0 was associated with both dairy and fiber intake. These data suggest that cardiometabolic health benefits previously attributed to 17:0 as a biomarker of dairy intake may partly be explained by fiber intake.

Highlights

  • Circulating odd-chain fatty acids (OCFA) pentadecanoic (15:0) and heptadecanoic acid (17:0) have been used as biomarkers of dairy and dairy fat intake in observational studies [1, 2]

  • The reason is that fatty acids primarily coming from exogenous sources are usually considered good candidates as biomarkers for intake [3] and more objective than self-reported dietary assessment

  • Since OCFA are considered to be solely produced in rumen of ruminants and cannot be produced by the human body, they have been proposed as good candidate biomarkers for dairy fat and/ or total dairy intake [4,5,6]

Read more

Summary

Introduction

Circulating odd-chain fatty acids (OCFA) pentadecanoic (15:0) and heptadecanoic acid (17:0) have been used as biomarkers of dairy and dairy fat intake in observational studies [1, 2]. A recent pooled analysis of 16 prospective cohort studies showed that higher circulating 15:0 and 17:0 were associated with 20 and 35% lower risk of type 2 diabetes, respectively, by comparing individuals with circulating 15:0 or 17:0 in the 90th to those in the 10th cohortspecific percentile [2]. In these studies, the beneficial associations between circulating 15:0 and 17:0 and cardiometabolic risk were often attributed to dairy intake only. We examined the associations of dairy and fiber intake with circulating 15:0 and 17:0 in patients with a history of myocardial infarction (MI)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call