Abstract

The role of cytochrome P450 (CYP)2C9 and CYP2C19 genetic variation in risk for phenytoin‐induced cutaneous adverse drug events is not well understood independently of the human leukocyte antigen B (HLA‐B)*15:02 risk allele. In the multi‐ethnic resource for Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, we identified 382 participants who filled a phenytoin prescription between 2005 and 2017. These participants included 21 people (5%) who self‐identified as Asian, 18 (5%) as black, 29 (8%) as white Hispanic, and 308 (81%) as white non‐Hispanic. We identified 264 (69%) CYP2C9*1/*1, 77 (20%) CYP2C9*1/*2, and 29 (8%) CYP2C9*1/*3. We also determined CYP2C19 genotypes, including 112 with the increased activity CYP2C19*17 allele. Using electronic clinical notes, we identified 32 participants (8%) with phenytoin‐induced cutaneous adverse events recorded within 100 days of first phenytoin dispensing. Adjusting for age, sex, daily dose, and race/ethnicity, participants with CYP2C9*1/*3 or CYP2C9*2/*2 genotypes were more likely to develop cutaneous adverse events compared with CYP2C9*1/*1 participants (odds ratio 4.47; 95% confidence interval 1.64–11.69; P < 0.01). Among participants with low‐intermediate and poor CYP2C9 metabolizer genotypes, eight (22%) who also had extensive and rapid CYP2C19 metabolizer genotypes experienced cutaneous adverse events, compared with none of those who also had intermediate CYP2C19 metabolizer genotypes (P = 0.17). Genetic variation reducing CYP2C9 metabolic activity may increase risk for phenytoin‐induced cutaneous adverse events in the absence of the HLA‐B*15:02 risk allele.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call