Abstract

Circulating biomarkers play a pivotal role in personalized medicine, offering potential for disease screening, prevention, and treatment. Despite established associations between numerous biomarkers and diseases, elucidating their causal relationships is challenging. Mendelian Randomization (MR) can address this issue by employing genetic instruments to discern causal links. Additionally, using multiple MR methods with overlapping results enhances the reliability of discovered relationships. Here, we report an MR study using multiple methods, including inverse variance weighted, simple mode, weighted mode, weighted median, and MR-Egger. We use the MR-base resource (v0.5.6) from Hemani et al. 2018 to evaluate causal relationships between 212 circulating biomarkers (curated from UK Biobank analyses by Neale lab and from Shin et al. 2014, Roederer et al. 2015, and Kettunen et al. 2016 and 99 complex diseases (curated from several consortia by MRC IEU and Biobank Japan). We report novel causal relationships found by four or more MR methods between glucose and bipolar disorder (Mean Effect Size estimate across methods: 0.39) and between cystatin C and bipolar disorder (Mean Effect Size: −0.31). Based on agreement in four or more methods, we also identify previously known links between urate with gout and creatine with chronic kidney disease, as well as biomarkers that may be causal of cardiovascular conditions: apolipoprotein B, cholesterol, LDL, lipoprotein A, and triglycerides in coronary heart disease, as well as lipoprotein A, LDL, cholesterol, and apolipoprotein B in myocardial infarction. This Mendelian Randomization study not only corroborates known causal relationships between circulating biomarkers and diseases but also uncovers two novel biomarkers associated with bipolar disorder that warrant further investigation. Our findings provide insight into understanding how biological processes reflecting circulating biomarkers and their associated effects may contribute to disease etiology, which can eventually help improve precision diagnostics and intervention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call