Abstract

BackgroundAlzheimer’s disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores.MethodsGray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs characteristic of AD were constructed from seeds in the default mode network, salience network, and executive control network, and cognitive test scores served as the major outcome factor.ResultsFor the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast, genetic influences in the A homozygotes were found mainly in the executive control network, and both the dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores. Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers among all four SCNs.ConclusionsOur results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles.

Highlights

  • Alzheimer’s disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration

  • We investigated whether the Structural covariance network (SCN) in AD may represent an endophenotype of the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) rs956572 genetic polymorphism

  • The main purpose of this study was to delineate the topography of SCN in terms of Bcl-2 functional polymorphism rather than to report the SCN differences constructed from the right or left seed

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. A single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores. Whereas the presence of amyloid may trigger downstream network degeneration, the presence of the antiapoptotic protein, B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2), may offer protection by regulating cellular resilience and apoptosis pathways [1]. A single-nucleotide polymorphism in the Bcl-2 gene, rs956572, has been found to significantly modulate protein and messenger RNA (mRNA) expression levels [5, 6]. The genetic associations of Bcl-2 on network influences remain to be explored in patients with AD

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call