Abstract

This study examined the associations of fine particulate matter (PM2.5) and its chemical constituents with risks of small for gestational age (SGA) and large for gestational age (LGA). Based on the China Labor and Delivery Survey, we included 70,206 birth records from 24 provinces in China. Concentrations of PM2.5 mass and six main constituents were estimated using satellite-based models. Logistic regression analysis was used to examine the associations, adjusted for sociodemographic characteristics and time trends. We found that an interquartile range increase in PM2.5 exposure during pregnancy was associated with 16% (95% confidence interval [CI]: 3-30%) and 11% (95% CI: 1-22%) higher risk of SGA and LGA, respectively. Elevated risk of SGA was associated with exposure to black carbon [odds ratio (OR) = 1.15, 95% CI: 1.00-1.32], ammonium (OR = 1.12, 95% CI: 1.01-1.25), and sulfate (OR = 1.12, 95% CI: 1.04-1.21); while increased risk of LGA was associated with exposure to black carbon (OR = 1.13, 95% CI: 1.02-1.26), ammonium (OR = 1.13, 95% CI: 1.03-1.24), sulfate (OR = 1.08, 95% CI: 1.01-1.15), and nitrate (OR = 1.14, 95% CI: 1.03-1.27). Our findings provide evidence that PM2.5 exposure was associated with increased risks of SGA and LGA, and constituents related to emissions from anthropogenic sources may play important roles in these associations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call