Abstract

BackgroundSunburn is the strongest risk factor for melanoma and non-melanoma skin cancers. Adolescent sunburns are related to higher risk of developing melanoma later in life. Little is known about the association of sunburns and shade, particularly tree cover, around adolescent homes and schools. This linkage study assessed associations of adolescent self-reported sunburns with ambient ultraviolet radiation (UV) and tree cover.MethodsWe analyzed a U.S. national sample of parent–child dyads (n = 1333) from the 2014 Family Life, Activity, Sun, Health, and Eating (FLASHE) study conducted by the National Cancer Institute. The outcome was adolescent sunburns reported for the previous 12 months. GIS buffers around geocoded home and school addresses were used to summarize UV and tree cover. A sensitivity analysis assessed different UV measures and tree cover buffer distances. Logistic regression models estimated the adjusted odds of any sunburns for five models: (1) no environmental variables; (2) spatial variables of latitude and longitude; (3) UV; (4) tree cover; and, (5) a combined model with UV and tree cover. Covariates included common sunburn-related items such as sun protective behaviors, socio-demographics, and latitude. Model residuals were assessed for spatial dependency and clustering.ResultsOverall, 44% of adolescents reported any sunburns in the previous 12 months. For the bivariate associations, lower categories of UV were associated with any reported sunburns (p-trend = 0.002). Home tree cover was not associated with any reported sunburns (p-trend = 0.08), whereas schools with lower categories of tree cover were associated with sunburns (p-trend = 0.008). The adjusted odds of any sunburns by UV tertiles, as a linear tread, was 0.89 (0.76–1.05) (p = 0.17); school tree cover was: 0.91 (0.78–1.07) (p = 0.25). Neither UV nor tree cover, in a combined model, were significant. Sensitivity analyses resulted in the optimal buffer size of 200 m for summarizing tree cover. Spatial dependence of residuals was not significant and clustering was significant for about 6% or less of the sample in each model.ConclusionsWe did not find significant relationships between UV or tree cover and adolescent sunburns, when adjusted by sunburn-related covariates. Better contextual data about where sunburns occurred is needed to identify environmental correlates of sunburn.

Highlights

  • Sunburn is the strongest risk factor for melanoma and non-melanoma skin cancers

  • Lower categories of ambient ultraviolet radiation (UV) were associated with sunburns (p-trend = 0.002)

  • There was not a significant difference between home tree cover and reported sunburns (p-trend = 0.08), whereas lower categories of tree cover at school were associated with higher frequency of reported sunburns (p-trend = 0.008)

Read more

Summary

Introduction

Sunburn is the strongest risk factor for melanoma and non-melanoma skin cancers. Adolescent sunburns are related to higher risk of developing melanoma later in life. Little is known about the association of sunburns and shade, tree cover, around adolescent homes and schools. This linkage study assessed associations of adolescent self-reported sunburns with ambient ultraviolet radiation (UV) and tree cover. Reducing exposure to ultraviolet radiation (UV) across the life course could reduce the risk of melanoma and non-melanoma skin cancers [1,2,3]. Tribby et al Int J Health Geogr (2020) 19:59 during this age are related to higher risk of developing melanoma later in life [4] and the majority of lifetime UV exposure occurs before the age of twenty [5]. Similar correlations have not yet been assessed for environmental shade and sunburns

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call