Abstract

Prenatal exposure to ambient air pollution has been associated with adverse perinatal outcomes in previous studies. However, few studies have examined the interaction between air pollution and the season of conception on term low birth weight (TLBW) or macrosomia. Birth registry data of singleton live births in Wenzhou, China, between January 2015 and December 2016 were accessed from the Wenzhou Maternal and Child Health Information Management platform, and data on the ambient air pollutants in Wenzhou were obtained from the Chinese Air Quality Online Monitoring and Analysis Platform. Single-/two-pollutant binary logistic regression models were used to assess the associations between ambient air pollutants (PM2.5, PM10, NO2, SO2, and O3) and TLBW/macrosomia, further exploring whether the season of conception interacts with air pollution to impact birth weight. Finally, 213,959 term newborns were selected, including 2452 (1.1%) infants with TLBW and 13,173 (6.1%) infants with macrosomia. In the single-/two-pollutant models, we observed an increased risk of TLBW associated with maternal exposure to PM2.5, PM10, SO2, and NO2 during the entire pregnancy, especially in the 2nd trimester. Maternal exposure to O3 during the 1st trimester was associated with increased macrosomia risk, and O3 exposure during the 3rd trimester was associated with increased TLBW risk. Pregnant women who conceive in the warm season may experience a more adverse ambient air environment that is related to the risks of TLBW. These findings add to the evidence suggesting that air pollution and the season of conception may have synergistic effects on adverse perinatal outcomes, especially TLBW. Further prospective cohort studies are needed to validate our results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call