Abstract

Noise pollution has been documented to increase the risks of cardiovascular disorders, which can be predicted by heart rate variability (HRV), nevertheless, there has been limited evidence on the modifiers of noise pollution. Environmental fine particulate matter (PM2.5) and obesity status are both growing major concerns of cardiovascular disease burden. Our study aims to investigate whether these two factors may modify the associations between noise exposure and HRV indices. An investigation was performed on 97 (53 normal-weight and 44 obese) participants aged 18–26 years, with continuous 5-min personal exposure assessment and ambulatory electrocardiogram monitoring for 24 h. This study found that personal exposure to noise was associated with decreased HRV level and imbalanced cardiac autonomic function, as indicated by decreases in standard deviation of normal-to-normal intervals (SDNN), square root of the mean squared differences of successive intervals (rMSSD), the percentage of R-R intervals that differ from each other by more than 50 ms (pNN50), low-frequency (LF) power, high-frequency (HF) power, and increases in LF–HF–Ratio. Stronger associations between personal noise exposure and HRV indices were observed among obese participants and participants with higher PM2.5 exposure levels compared to their counterparts. For SDNN, a 1 dB(A) increment in personal noise exposure at 3h-average was associated with a 1.25% (95%CI: -1.64%, −0.86%) decrease among obese participants, and a 0.11% (95%CI: -0.38%, 0.16%) decrease among normal-weight participants (P for subgroup difference<0.001); and a 0.87% (95%CI: -1.20%, −0.54%) decrease among participants with higher PM2.5 exposure levels, and a 0.22% (95%CI: -0.58%, 0.14%) decrease among participants with lower PM2.5 exposure levels (P for subgroup difference = 0.008). Obesity and PM2.5 may aggravate the adverse effects of noise on HRV, which has implications for targeted prevention of cardiovascular disease burden associated with noise pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call