Abstract

BackgroundSynoptic circulation patterns (large-scale tropospheric motion systems) affect air pollution and, potentially, air-pollution-morbidity associations. We evaluated the effect of synoptic circulation patterns (air masses) on the association between ozone and hospital admissions for asthma and myocardial infarction (MI) among adults in North Carolina.MethodsDaily surface meteorology data (including precipitation, wind speed, and dew point) for five selected cities in North Carolina were obtained from the U.S. EPA Air Quality System (AQS), which were in turn based on data from the National Climatic Data Center of the National Oceanic and Atmospheric Administration. We used the Spatial Synoptic Classification system to classify each day of the 9-year period from 1996 through 2004 into one of seven different air mass types: dry polar, dry moderate, dry tropical, moist polar, moist moderate, moist tropical, or transitional. Daily 24-hour maximum 1-hour ambient concentrations of ozone were obtained from the AQS. Asthma and MI hospital admissions data for the 9-year period were obtained from the North Carolina Department of Health and Human Services. Generalized linear models were used to assess the association of the hospitalizations with ozone concentrations and specific air mass types, using pollutant lags of 0 to 5 days. We examined the effect across cities on days with the same air mass type. In all models we adjusted for dew point and day-of-the-week effects related to hospital admissions.ResultsOzone was associated with asthma under dry tropical (1- to 5-day lags), transitional (3- and 4-day lags), and extreme moist tropical (0-day lag) air masses. Ozone was associated with MI only under the extreme moist tropical (5-day lag) air masses.ConclusionsElevated ozone levels are associated with dry tropical, dry moderate, and moist tropical air masses, with the highest ozone levels being associated with the dry tropical air mass. Certain synoptic circulation patterns/air masses in conjunction with ambient ozone levels were associated with increased asthma and MI hospitalizations.

Highlights

  • Synoptic circulation patterns affect air pollution and, potentially, air-pollution-morbidity associations

  • We focused the analysis on the three air mass types that were characterized by the highest concentrations of ozone–the dry moderate (DM), dry tropical (DT), and moist tropical (MT) air masses–to identify the likely sources associated with each air mass

  • We have presented results obtained by analyzing the association between ozone concentrations and hospital admissions for asthma and myocardial infarction in the general population in selected cities in North Carolina using meteorological, air pollution, and health data for nine years (1996-2004)

Read more

Summary

Introduction

Synoptic circulation patterns (large-scale tropospheric motion systems) affect air pollution and, potentially, air-pollution-morbidity associations. Exacerbation of asthma symptoms has been linked to Extensive research indicates that exposure to air pollution has serious public health consequences in terms of both morbidity and mortality. Epidemiologic studies indicate that elevated levels of ground-level ozone are linked to cardiovascular and respiratory morbidity and mortality [8,9,10,11,12]. The published literature [8] shows that subpopulations with cardiovascular disease or respiratory disease are more likely to be affected by air pollution. This ozone-mortality association, shows regional heterogeneity (based on intercity response), with cities in the northeastern United States showing greater response [13]. Our understanding of the relationships among meteorological parameters, air pollution, and health remains incompletely defined [15,16,17,18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call