Abstract

BackgroundDyslipidemia in pregnancy are associated with gestational diabetes mellitus (GDM), preeclampsia, preterm birth and other adverse outcomes, which has been extensively studied in western countries. However, similar studies have rarely been conducted in Asian countries. Our study was aimed at investigating the associations between maternal dyslipidemia and adverse pregnancy outcomes among Chinese population.MethodsData were derived from 934 pairs of non-diabetic mothers and neonates between 2010 and 2011. Serum blood samples were assayed for fasting total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) concentrations during the first, second and third trimesters. The present study explored the associations between maternal lipid profile and pregnancy complications and perinatal outcomes. The pregnancy complications included GDM, preeclampsia and intrahepatic cholestasis of pregnancy (ICP); the perinatal outcomes included preterm birth, small/large for gestational age (SGA/LGA) infants and macrosomia. Odds ratios (ORs) and 95 % confidence intervals (95 % CIs) were calculated and adjusted via stepwise logistic regression analysis. Optimal cut-off points were determined by ROC curve analysis.ResultsAfter adjustments for confounders, every unit elevation in third-trimester TG concentration was associated with increased risk for GDM (OR = 1.37, 95 % CI: 1.18-1.58), preeclampsia (OR = 1.50, 95 % CI: 1.16-1.93), ICP (OR = 1.28, 95 % CI: 1.09-1.51), LGA (OR = 1.13, 95 % CI: 1.02-1.26), macrosomia (OR = 1.19, 95 % CI: 1.02-1.39) and decreased risk for SGA (OR = 0.63, 95 % CI: 0.40-0.99); every unit increase in HDL-C concentration was associated with decreased risk for GDM and macrosomia, especially during the second trimester (GDM: OR = 0.10, 95 % CI: 0.03-0.31; macrosomia: OR = 0.25, 95 % CI: 0.09-0.73). The optimal cut-off points for third-trimester TG predicting GDM, preeclampsia, ICP, LGA and SGA were separately ≥3.871, 3.528, 3.177, 3.534 and ≤2.530 mmol/L. The optimal cut-off points for third-trimester HDL-C identifying GDM, macrosomia and SGA were respectively ≤1.712, 1.817 and ≥2.238 mmol/L.ConclusionsAmong Chinese population, maternal high TG in late pregnancy was independently associated with increased risk of GDM, preeclampsia, ICP, LGA, macrosomia and decreased risk of SGA. Relative low maternal HDL-C during pregnancy was significantly associated with increased risk of GDM and macrosomia; whereas relative high HDL-C was a protective factor for both of them.

Highlights

  • Dyslipidemia in pregnancy are associated with gestational diabetes mellitus (GDM), preeclampsia, preterm birth and other adverse outcomes, which has been extensively studied in western countries

  • The present study confirmed maternal TG concentrations in pregnancy were positively associated with the risk of GDM, preeclampsia, large for gestational age (LGA) and macrosomia among Chinese population, which was in line with previous research performed in other races/ethnicities [14,15,16,17,18,19,20, 24, 31]

  • Compared with the study conducted by Wang et al [47] which assessed the associations between TG/high-density lipoprotein-cholesterol (HDL-C) ratios and the risk of GDM and LGA, we separately identified the contributions of TG and HDL-C to pregnancy outcomes and expanded insights into effects of different lipid components on mothers and neonates

Read more

Summary

Introduction

Dyslipidemia in pregnancy are associated with gestational diabetes mellitus (GDM), preeclampsia, preterm birth and other adverse outcomes, which has been extensively studied in western countries. Our study was aimed at investigating the associations between maternal dyslipidemia and adverse pregnancy outcomes among Chinese population. Evidence has suggested that adverse pregnancy outcomes can jeopardize short- and long-term maternal and fetal health. Women with previous gestational diabetes mellitus (GDM) have an increased risk of type 2 diabetes or cardiovascular diseases (CVD) in later life [1, 2]. According to Developmental origins of Health and Disease (DOHaD) hypothesis, individuals who were exposed to an undernourished intrauterine environment are more prone to developing type 2 diabetes or CVD in later life as a result of epigenetic modifications, which permanently reprogramme their bodies [6, 7]. It is noteworthy that disturbed maternal metabolism, including atherogenic lipid changes in pregnancy, is one of the crucial factors that involved in pathological process

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call