Abstract

Genomic imprinting is essential for normal placental and fetal growth. One theory to explain the evolution of imprinting is the kinship theory (KT), which predicts that genes that are paternally expressed will promote fetal growth, whereas maternally expressed genes will suppress growth. We investigated the expression of imprinted genes using microarray measurements of expression in term placentae. Correlations between birthweight and the expression levels of imprinted genes were more significant than for non-imprinted genes, but did not tend to be positive for paternally expressed genes and negative for maternally expressed genes. Imprinted genes were more dysregulated in preeclampsia (a disorder associated with placental insufficiency) than randomly selected genes, and we observed an excess of patterns of dysregulation in preeclampsia that would be expected to reduce nutrient allocation to the fetus, given the predictions of the KT. However, we found no evidence of coordinated regulation among these imprinted genes. A few imprinted genes have previously been shown to be associated with fetal growth and preeclampsia, and our results indicate that this is true for a broader set of imprinted genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.