Abstract

The imbalance of gut microbiota has been linked to manifold endocrine diseases, but the association with Graves' disease (GD) is still unclear. The purpose of this study was to investigate the correlation between human gut microbiota and clinical characteristics and thyroidal functional status of GD. 14 healthy volunteers (CG) and 15 patients with primary GD (HG) were recruited as subjects. 16SrDNA high-throughput sequencing was performed on IlluminaMiSeq platform to analyze the characteristics of gut microbiota in patients with GD. Among them, the thyroid function of 13 patients basically recovered after treatment with anti-thyroid drugs (oral administration of Methimazole for 3-5months). The fecal samples of patients after treatment (TG) were sequenced again, to further explore and investigate the potential relationship between dysbacteriosis and GD. In terms of alpha diversity index, the observed OTUs, Simpson and Shannon indices of gut microbiota in patients with GD were significantly lower than those in healthy volunteers (P < 0.05).The difference of bacteria species was mainly reflected in the genus level, in which the relative abundance of Lactobacillus, Veillonella and Streptococcus increased significantly in GD. After the improvement of thyroid function, a significant reduction at the genus level were Blautia, Corynebacter, Ruminococcus and Streptococcus, while Phascolarctobacterium increased significantly (P < 0.05). According to Spearman correlation analysis, the correlation between the level of thyrotropin receptor antibody (TRAb) and the relative abundance of Lactobacillus and Ruminococcus was positive, while Synergistetes and Phascolarctobacterium showed a negative correlation with TRAb. Besides, there were highly significant negative correlation between Synergistetes and clinical variables of TRAb, TPOAb and TGAb (P < 0.05, R < - 0.6). This study revealed that functional status and TRAb level in GD were associated with composition and biological function in the gut microbiota, with Synergistetes and Phascolarctobacterium protecting the thyroid probably, while Ruminococcus and Lactobacillus may be novel biomarkers of GD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call