Abstract

Autism is a neurodevelopmental condition associated with atypical social communication, cognitive, and sensory faculties. Recent advances in exposure biology suggest that biomarkers of elemental uptake and metabolism measured in hair samples can yield an effective signal predictive of autism diagnosis. Here, we investigated if elemental biomarkers in hair were associated with functional connectivity in regions of the default mode network (DMN) previously linked to autism. In a study sample which included twin pairs with concordant and discordant diagnoses for autism, our analysis of hair samples and neuroimaging data supported two general findings. First, independent of autism diagnosis, we found a broad pattern of association between elemental biomarkers and functional connectivity in the DMN, which primarily involved dynamics in zinc metabolism. Second, we found that associations between the DMN and elemental biomarkers, particularly involving phosphorus, calcium, manganese, and magnesium, differed significantly in autistic participants from control participants. In sum, these findings suggest that functional dynamics in elemental metabolism relate broadly to persistent patterns of functional connectivity in the DMN, and that these associations are altered in the emergence of autism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call