Abstract

PurposeObservational studies have linked cytokines to the occurrence of female and male infertility. However, it is not clear how biomarkers of inflammation are causally related to infertility. To explore whether genetic variants in circulating cytokines are associated with the pathogenesis of infertility, we performed two-sample Mendelian randomization (MR) analysis. MethodsA total of 31,112 individuals of European ancestry were included in a genome-wide association study (GWAS) of 47 circulating cytokines as instrumental variables (IVs). Outcome data were female infertility, including four different subtypes, and male infertility, from the FinnGen consortium. Five MR methods, including inverse-variance weighted (IVW), MR-Egger, simple mode, weighted median, and weighted mode were employed to examine the genetic association between cytokines and the risk of female infertility and male infertility. The false discovery rate (FDR) was controlled using the Benjamini–Hochberg method. ResultsAfter FDR correction, cis-protein quantitative trait locus (cis-pQTL) instruments showed that the cytokines GROa and MCSF were positively associated with female infertility. In analyses of subtypes of female infertility, eotaxin and sICAM were inversely associated with ovulation-related infertility; MCP3 alone was positively associated with uterus-related infertility; GROa and MCSF were positively correlated with infertility of cervical, vaginal, and other or unspecified origin; and MIP1a was negatively correlated with tubal origin infertility. The cytokines HGF, IL-2ra, and RANTES were positively correlated with male infertility. Similar findings were obtained in sensitivity analyses. There was no evidence of pleiotropy or heterogeneity in the results. ConclusionThese findings contribute to current understanding of the role of cytokine biomarkers in the etiology of female and male infertility. Furthermore clinical experimental validation is required to evaluate the potential of these cytokines as biomarkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call