Abstract
IntroductionEven though cadmium (Cd) exposure and cellular senescence (telomere length) have been linked in previous studies, composite molecular aging biomarkers are more significant and reliable factors to consider when examining the connection between metal exposure and health outcomes. The purpose of this research was to assess the association between urinary cadmium (U-Cd) and whole-body aging (phenotypic age).MethodsPhenotypic age was calculated from chronological age and 9 molecular biomarkers. Multivariate linear regression models, subgroup analysis, and smoothing curve fitting were used to explore the linear and nonlinear relationship between U-Cd and phenotypic age. Mediation analysis was performed to explore the mediating effect of U-Cd on the association between smoking and phenotypic age.ResultsThis study included 10,083 participants with a mean chronological age and a mean phenotypic age of 42.24 years and 42.34 years, respectively. In the fully adjusted model, there was a positive relationship between U-Cd and phenotypic age [2.13 years per 1 ng/g U-Cd, (1.67, 2.58)]. This association differed by sex, age, and smoking subgroups (P for interaction < 0.05). U-Cd mediated a positive association between serum cotinine and phenotypic age, mediating a proportion of 23.2%.ConclusionsOur results suggest that high levels of Cd exposure are associated with whole-body aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.