Abstract

MicroRNA (miRNA) are abundant in milk, and likely have regulatory activity involving lactation and immunity. The objective of this study was to determine the miRNA profile in colostrum of overconditioned cows compared with cows of more moderate body condition score (BCS) at calving. Multiparous cows with either high (≥4.0 on a scale of 1 to 5; n = 7) or moderate BCS (2.75 to 3.50; n = 9) in the week before parturition were selected from a commercial dairy herd. Blood and colostrum were sampled within 24 h after calving. Blood serum was analyzed for free fatty acid (FFA) concentration. MicroRNA was isolated from colostrum samples after removing milk fat and cells. MicroRNA were sequenced, and reads were mapped to the bovine genome and to the existing database of miRNA at miRBase.org. Two programs, Oasis 2.0 and miRDeep2, were employed in parallel for read alignment, and analysis of miRNA count data was performed using DESeq2. Identification of differentially expressed miRNA from DESeq2 was not affected by the differences in miRNA detected by the 2 mapping programs. Most abundant miRNA included miR-30a, miR-148a, miR-181a, let-7f, miR-26a, miR-21, miR-22, and miR-92a. Large-scale shifts in miRNA profile were not observed; however, colostrum of cows with high BCS contained less miR-486, which has been linked with altered glucose metabolism. Colostrum from cows with elevated serum FFA contained less miR-885, which may be connected to hepatic function during the transition period. Potential functions of abundant miRNA suggest involvement in development and maintenance of cellular function in the mammary gland, with the additional possibility of influencing neonatal tissue and immune system development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.