Abstract

The prevalence of obesity as well as cognitive impairment increases with age. Previous studies showed that obesity is associated with an increased risk of cognitive impairment and dementia. Body composition changes occur as part of the aging process; therefore, the assessment of obesity in elderly populations should include body composition as well as body weight. This study investigated the relationship between body mass index (BMI), body composition, and cognitive function in a community-dwelling elderly Korean population.This cohort-based cross-sectional analysis included 2386 elderly participants aged between 70 and 84 years from the Korean Frailty and Aging Cohort Study for 2016 to 2017. To investigate the relationship between body composition and cognitive function in community-dwelling individuals, BMI and body composition, including total and trunk fat mass and fat-free mass, were measured by dual-energy X-ray absorptiometry. Fat mass index (FMI), trunk fat mass index (TFMI), and fat-free mass index (FFMI) were used to represent the body composition. A short form of the Korean version of the Consortium to Establish a Registry for Alzheimer disease was used to assess cognitive function. To evaluate the relationship between variables, simple and fully adjusted multivariable analyses were performed using generalized linear regression models.The mean ages were 76.8 years for males and 76.1 years for females. The BMI of male participants was significantly lower than that of females (23.9 ± 2.89 vs 24.7 ± 3.02 kg/m2, P < .001). Among body composition parameters, the differences in FMI (6.44 ± 1.97 vs 9.29 ± 2.3 kg/m2), TFMI (3.68 ± 1.33 vs 5.03 ± 1.43 kg/m2), and FFMI (17.4 ± 1.64 vs 15.3 ± 1.39 kg/m2) were statistically significant. In linear regression analyses, BMI, FMI, and TFMI showed significant positive correlations with mini-mental state examination in the Korean version of the CERAD assessment packet; wordlist memory, recall, and recognition; and frontal assessment battery only in males. The significant positive correlations persisted even after fully adjusting for age, education periods, location of residence, depression, marriage, annual income, presence of diabetes mellitus, dyslipidemia, and hypertension. However, no significant correlations in either sex were observed between FFMI and cognitive functions in the fully adjusted models.In this study, BMI, and fat mass-related indexes including FMI and TFMI showed a positive linear correlation with cognitive functions but not FFMI. Moreover, the findings were significant only in men. Besides the difference between sexes, the results of this study showed a more apparent correlation in fat mass than in fat-free mass that comprises body weight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call