Abstract

Background: Previous studies suggest that fetal programming to hyperglycemia in pregnancy is due to modulation of DNA methylation (DNAm), but they have been limited in their maternal glycemic characterization. Methods: In the Gen3G study, we used a principal component analysis to integrate multiple glucose and insulin values measured during the second trimester oral glucose tolerance test. We investigated associations between principal components and cord blood DNAm levels in an epigenome-wide analysis among 430 mother-child pairs. Results: The first principal component was robustly associated with lower DNAm at cg26974062 (TXNIP;p =9.9×10-9) in cord blood. TXNIP is a well-known DNAm marker for type 2 diabetes in adults. Conclusion: Wehypothesize that abnormal glucose metabolism in pregnancy may program dysregulation of TXNIP across the life course.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.