Abstract

BackgroundKashin-Beck disease is a kind of degenerative osteoarthropathy. Genetic factors may play an important role in the pathogenesis of KBD.ObjectiveTo investigate the association of the selenoprotein genes GPX1 (rs1050450, rs1800668, and rs3811699), TrxR2 (rs5748469), and DIO2 (rs225014) with Kashin-Beck disease (KBD) in a Tibetan population and to investigate the association of these SNPs with the serum iodine/selenium concentration in the Tibetan population.DesignFive SNPs including rs1050450, rs1800668, and rs3811699 in the GPX1 gene, rs5748469 in the TrxR2 gene, and rs225014 in the DIO2 gene were analyzed in Tibetan KBD patients and controls using the SNaPshot method. P trend values of the SNPs were calculated using an additive model.ResultsNone of the five SNPs in the three genes showed a significant association with KBD. Haplotypes TCC, TTC and TTT of rs1050450, rs1800668 and rs3811699 in GPX1 showed a significant association with KBD and controls with P value of 0.0421, 5.0E-4 and 0.0066, respectively. The GPX1 gene (rs1050450) showed a potential significant association with the iodine concentration in the Tibetan study population (P = 0.02726). However, no such association was detected with the selenium concentration (P = 0.2849).Conclusion(s)In this study, we showed that single SNPs in the genes GPX1 (rs1050450, rs1800668 and rs3811699), TrxR2 (rs5748469), and DIO2 (rs225014) may not be significantly associated with KBD in a Tibetan population. However, haplotype analysis of SNPs rs1050450, rs1800668 and rs3811699 in GPX1 gene showed a significant association with KBD. The results suggested that GPX1 gene play a protective role in the susceptivity of KBD in Tibetans. Furthermore, the GPX1 gene (rs1050450) may be significantly associated with the serum iodine concentration in Tibetans.

Highlights

  • Kashin–Beck Disease (KBD) is named after the two Russian Cossack doctors Nikolai Kashin and Evgeny Beck who first described bone deformities in patients in Russia in 1848 and 1906, respectively [1]

  • The single nucleotide polymorphisms (SNPs) rs1050450 (Pro200Leu) in the GPX1 gene was reported to be significantly associated with KBD in previous studies in a Han Chinese population (P = 0.013), this SNP did not show a significant association with KBD in the Tibetan population in this study (P = 0.1031) [21]

  • In this study, we examined the genotype of five selenoprotein SNPs including rs1050450, rs1800668, and rs3811699 in the Gpx1gene, rs225014 in the Dio2 gene, and rs5748569 in the TrxR2 gene in KBD patients and controls in a Tibetan population

Read more

Summary

Introduction

Kashin–Beck Disease (KBD) is named after the two Russian Cossack doctors Nikolai Kashin and Evgeny Beck who first described bone deformities in patients in Russia in 1848 and 1906, respectively [1]. KBD is known as an endemic, chronic, and degenerative osteoarthropathy, with the involvement of epiphyseal cartilage damage, joint damage, and gradual deformation of the bone and joints [2,3,4]. China has the most KBD patients in the world [1]. The disease often occurs in children aged 5–15 years and is age related, and serious KBD is responsible for significant disability. In some KBD endemic regions in China, the incidence of KBD is about 8.3% (2.5 million of 30 million urban residents affected) [6]. Kashin-Beck disease is a kind of degenerative osteoarthropathy. Genetic factors may play an important role in the pathogenesis of KBD

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.