Abstract

Cyclophosphamide (CPA)-based combination treatment has known to be effective for breast cancer, but often causes adverse drug reactions (ADRs). Hence, the identification of patients at risk for toxicity by CPA is clinically significant. In this study, a stepwise case-control association study was conducted using 403 patients with breast cancer who received the CPA combination therapy. A total of 143 genetic polymorphisms in 13 candidate genes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, ALDH1A1, ALDH3A1, GSTA1, GSTM1, GSTP1, GSTT1, ABCC2 and ABCC4), possibly involved in the activation, metabolism and transport of CPA, were genotyped using 184 cases who developed either > or =grade 3 leukopenia/neutropenia or > or =grade 2 gastrointestinal toxicity and 219 controls who did not show any ADRs throughout the treatment. The association study revealed that one SNP, rs9561778 in ABCC4, showed a significant association with CPA-induced ADRs (Cochran-Armitage trend's P-value=0.00031; odds ratio (OR)=2.06). Subgroup analysis also indicated that the SNP rs9561778 was significantly associated with two major ADR subgroups; gastrointestinal toxicity and leukopenia/neutropenia (Cochran-Armitage trend's P-value=0.00019 and 0.014; OR=2.31 and 1.83). Furthermore, the SNP rs9561778 showed an association with breast cancer patients who were treated with CA(F) drug regimen-induced ADR (Cochran-Armitage trend's P-value=0.00028; OR=3.13). The SNPs in ABCC4 might be applicable in predicting the risk of ADRs in patients receiving CPA combination chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call