Abstract
Accumulating evidence suggests that oxidative stress plays a role in the mechanisms of action of methamphetamine (METH) in the brain. In the present study, we investigated the association between the genetic polymorphisms among glutathione (GSH)-related enzymes; glutathione S-transferases (GSTs) such as GSTT1 (Non-deletion/Null), GSTT2 (Met139Ile), GSTA1 (-69C/T), and GSTO1 (Ala140Asp); glutathione peroxidase 1 (GPX1) (Pro198Leu); and glutamate-cysteine ligase modifier (GCLM) subunit and METH use disorder in a Japanese population. Two hundred eighteen METH abusers and 233 healthy controls were enrolled in the study. There was a significant difference in GSTT1 genotype frequency between patients with METH psychosis and controls (P = 0.039, odds ratio: 1.52, 95% CI 1.03-2.24). Furthermore, the frequency (66.0%) of the GSTT1 null genotype among prolonged-type METH psychotic patients with spontaneous relapse was significantly higher (P = 0.025, odds ratio: 2.43, 95% CI 1.13-5.23) than that (44.4%) of transient-type METH psychotic patients without spontaneous relapse. However, there were no associations between the polymorphisms of other genes and METH abuse. The present study suggests that the polymorphism of the GSTT1 gene might be a genetic risk factor of the development of METH psychosis in a Japanese population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Medical Genetics Part B: Neuropsychiatric Genetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.