Abstract

β 2-Microglobulin (β2-m) is a major structural component of dialysis-related amyloid fibrils. Kozhukh et al. [J. Biol. Chem. 277 (2002) 1310] prepared a series of peptide fragments of β2-m by the protease digestion and examined their ability to form amyloid fibrils in citrate buffer at pH 2.5. Among various peptides, a 22-residue K3 peptide corresponding to Ser20-Lys41 spontaneously formed amyloid fibrils in aqueous solution. This peptide also formed amyloid protofibrils in 20% (v/v) 2,2,2-trifluoroethanol (TFE). To investigate the influence of solvent conditions on fibril formation, we studied their structures by atomic force microscopy. In aqueous solution, fibrils had a diameter of 4 or 8 nm and tended to cluster each other. On the other hand, protofibrils in 20% (v/v) TFE had a diameter of 2 nm with no tendency of clustering. Intriguingly, when the K3 protofibrils were transferred from 20% (v/v) TFE to aqueous solution, some of them associated to form thicker fibrils with a diameter of 4–15 nm and a left-handed helical twist. TFE is a hydrophobic solvent, so that hydrophobic interactions between molecules may be weakened. The results suggest that the fibrils in aqueous conditions are formed by the cooperative association of protofibrils at the growing ends of the fibrils, in which hydrophobic interactions play a major role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.