Abstract

Benzene is a leukemogen, and exposure to benzene is an occupational hazard in the petroleum refining industries. The effects of genetic polymorphisms in the NQO1 (rs1800566), MPO (rs2333227), and XRCC1 (rs25487) genes on benzene-induced chromosome abnormalities were assessed in 108 benzene-exposed workers and 33 office workers. The mean benzene exposure for exposed workers was 0.51 ppm for full-shift workers, and the time-weighted average ranged from 0.004 to 4.25 ppm. The frequencies of micronuclei (MN) and chromosome aberrations (CA) were significantly higher in workers exposed to benzene than unexposed controls. Exposed workers with the T/T genotype for NQO1 showed significant 1.9-fold (95% CI = 1.5–2.3) and 2.6-fold (95% CI = 1.7–3.9) increases in MN and CA frequencies, respectively, compared to controls with C/C and C/T genotypes, after adjusting for age, smoking status, and alcohol intake. Among exposed workers, subjects with the combination of MPO G/G and XRCC1 Arg/Gln or Gln/Gln showed a significantly higher CA frequency compared to those with the combination of MPO G/A or A/A and XRCC1 Arg/Arg genotypes. These results indicated that the genotoxicity induced by a chronic benzene exposure is modulated by genes involved in both DNA repair and benzene metabolic pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.