Abstract

microRNA (miRNA) plays a role in the pathogenesis of ischemic stroke, and single nucleotide polymorphisms in miRNA genes may contribute to disease susceptibility. However, the effect of miR-146a, miR-196a2, and miR-499 polymorphisms on ischemic stroke susceptibility has been rarely reported. Using the TaqMan assay, we evaluated the association of hsa-miR-146a/rs2910164, hsa-miR-196a2/rs11614913, and hsa-miR-499/rs3746444 polymorphisms with the risk of ischemic stroke in a Chinese population with 531 ischemic stroke patients and 531 control subjects. Rs2910164 C/G genotypes were significantly associated with increased risk of ischemic stroke in different genetic model (homozygote comparison: OR = 2.00, 95% CI, 1.29–3.12, P = 0.002; additive model: OR = 1.35, 95% CI, 1.10–1.65, P = 0.004;dominant model: OR = 1.33, 95% CI, 1.00–1.75, P = 0.049; recessive model: OR = 1.82, 95% CI, 1.20–2.74, P = 0.004). Subjects with allele G of hsa-miR-146a/ rs2910164 also showed increased risk of ischemic stroke (OR = 1.33, 95% CI, 1.09–1.62, P = 0.005). Stratification analysis showed that the association between rs2910164 and the risk of ischemic stroke was more pronounced in subjects over 60 years old, females, non-drinkers, subjects without hypertension or diabetes mellitus. There were significant combined effects between miR-146a/rs2910164 and fasting glucose/low-density lipoprotein cholesterol levels on ischemic stroke susceptibility. However, we failed to find any association between the alleles/genotypes of rs11614913 T/C and ischemic stroke, respectively (P> 0.05). In summary, this study provides evidence that miR-146a/rs2910164 might be associated with a significantly increased risk of ischemic stroke in a Chinese population, and the combined effects between miRNA polymorphism and fasting glucose /blood lipid levels may contribute to stroke pathogenesis.

Highlights

  • Stroke is the second leading cause of death for people over 60 years old [1]

  • BMI, body mass index; FG, fasting glucose; TC, total cholesterol; TG, triglycerides; HDL-c, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. *Chi-square test for the difference in the distribution frequency between patients with ischemic stroke and control subjects. †Mann-Whitney U test for the differences between patients with ischemic stroke and control subjects

  • We evaluated the associations between two miRNA polymorphisms and the risk of ischemic stroke in a Chinese population, and estimated the gene-environment interaction and combined effects of miRNA polymorphisms and clinical characteristics

Read more

Summary

Introduction

Stroke is the second leading cause of death for people over 60 years old [1]. In China, with 1.4 billion populations, the annual stroke mortality rate is approximately 157 per 100000, which has exceeded heart disease and become the leading cause of death and adult disability [2]. In addition to the conventional risk factors, such as age, sex, body mass index, hypertension, diabetes mellitus, smoking, and hyperlipidemia, single-nucleotide polymorphisms (SNPs) have been identified in genome-wide association studies (GWAS) as susceptibility loci for ischemic stroke risk [4,5]. Such loci explain only a small portion of the total risk, and few of these SNPs discovered by GWAS involve miRNA genes

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call