Abstract

Skeletal muscle fat is greater in African ancestry individuals compared with whites, is associated with diabetes, and is a heritable polygenic trait. However, specific genetic factors contributing to skeletal muscle fat in humans remain to be defined. Muscle carnitine palmitoyltransferase-1B (CPT1B) is a key enzyme in the regulation of skeletal muscle mitochondrial beta-oxidation of long-chain fatty acids, and as such is a reasonable biological candidate gene for skeletal muscle fat accumulation. Therefore, we examined the association of three nonsynonymous coding variants in CPT1B (G531L, I66V, and S427C; a fourth, A320G, could not be genotyped) and quantitative computed tomography measured tibia skeletal muscle composition and BMI among 1,774 Afro-Caribbean men aged > or =40, participants of the population-based Tobago Health Study. For all variants, no significant differences were observed for BMI or total adipose tissue. Among individuals who were homozygous for the minor allele at G531L or I66V, intermuscular adipose tissue (IMAT) was 87% (P = 0.03) and 54% lower (P = 0.03), respectively. In contrast, subcutaneous adipose tissue (SAT) was 11% (P = 0.017) and 7% (P = 0.049) higher, respectively, than among individuals without these genotypes. These associations were independent of age, body size, and muscle area. Finally, no individuals with type 2 diabetes were found among those who were homozygous for the minor allele of either at G531L and I66V whereas 14-18% of men with the major alleles had type 2 diabetes (P = 0.03 and 0.007, respectively). Our results suggest a novel association between common nonsynonymous coding variants in CPT1B and ectopic skeletal muscle fat among middle-aged and older African ancestry men.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call