Abstract

ObjectiveTo replicate the associations of leukocyte telomere length (LTL) with variants at four loci and to investigate their associations with coronary heart disease (CHD) and type II diabetes (T2D), in order to examine possible causal effects of telomere maintenance machinery on disease aetiology. MethodsFour SNPs at three loci BICD1 (rs2630578 GγC), 18q12.2 (rs2162440 GγT), and OBFC1 (rs10786775 CγG, rs11591710 AγC) were genotyped in four studies comprised of 2353 subjects out of which 1148 had CHD and 566 T2D. Three SNPs (rs12696304 CγG, rs10936601G>T and rs16847897 GγC) at the TERC locus were genotyped in these four studies, in addition to an offspring study of 765 healthy students. For all samples, LTL had been measured using a real-time PCR-based method. ResultsOnly one SNP was associated with a significant effect on LTL, with the minor allele G of OBFC1 rs10786775 SNP being associated with longer LTL (β=0.029, P=0.04). No SNPs were significantly associated with CHD or T2D. For OBFC1 the haplotype carrying both rare alleles (rs10786775G and rs11591710C, haplotype frequency 0.089) was associated with lower CHD prevalence (OR: 0.77; 95% CI: 0.61–0.97; P= 0.03). The TERC haplotype GTC (rs12696304G, rs10936601T and rs16847897C, haplotype frequency 0.210) was associated with lower risk for both CHD (OR: 0.86; 95% CI: 0.75-0.99; P=0.04) and T2D (OR: 0.74; 95% CI: 0.61–0.91; P= 0.004), with no effect on LTL. Only the last association remained after adjusting for multiple testing.ConclusionOf reported associations, only that between the OBFC1 rs10786775 SNP and LTL was confirmed, although our study has a limited power to detect modest effects. A 2-SNP OBFC1 haplotype was associated with higher risk of CHD, and a 3-SNP TERC haplotype was associated with both higher risk of CHD and T2D. Further work is required to confirm these results and explore the mechanisms of these effects.

Highlights

  • Telomeres are made up of TTAGGG sequences repeated across four to 15 kilobases at the end of each chromosome

  • A shorter mean leukocyte telomere length (LTL) was observed in older compared to younger subjects as well as in cases compared to controls, as previously reported [9,11,25]

  • The TERC haplotype GTC was significantly associated with a lower odds ratio (OR) for coronary heart disease (CHD) (OR: 0.86; 95% confidence interval (CI): 0.75 0.99; P= 0.04)

Read more

Summary

Introduction

Telomeres are made up of TTAGGG sequences repeated across four to 15 kilobases at the end of each chromosome. In most adult differentiated cells, telomeres shorten progressively with each cell division until they reach a critical length (the Hayflick limit), where the cell cycle is interrupted and the cells enter senescence [3,4]. To prolong their growth capacity, highly dividing cells, such as stem cells, maintain high activity of the telomerase complex, composed of the reverse transcriptase TERT and the RNA template TERC, responsible for the replenishment of shortened telomeres [5,6]. The causal effect of short telomere on heart disease development remains controversial

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.