Abstract

TAR DNA-binding protein 43 (TDP-43) has been recognized as a frequent co-pathology of Alzheimer's disease (AD). The effect of the presence of TDP-43 pathology on in vivo measures of AD-related amyloid pathology using amyloid sensitive PET is still unresolved. To study the association of TDP-43 pathology with antemortem amyloid PET signal. We studied 30 cases from the ADNI autopsy sample with available ratings of presence of TDP-43 and antemortem amyloid sensitive 18F-FlorbetapirPET. We used Bayesian regression to determine the effect of TDP-43 on global and regional amyloid PET signal. In a post-hoc analysis, we assessed the association of TDP-43 pathology with antemortem memory performance. We found substantial to strong evidence for a negative effect of TDP-43 (Bayes factor against the null model (BF10) = 9.0) and hippocampal sclerosis (BF10 = 6.4) on partial volume corrected hippocampal 18F-Florbetapir uptake. This effect was only partly mediated by the negative effect of TDP-43 on hippocampal volume. In contrast, Bayesian regression supported that there is no effect of TDP-43 on global cortical PET-signal (BF10 = 0.65). We found an anecdotal level of evidence for a negative effect of TDP-43 pathology on antemortem memory performance after accounting for global amyloid PET signal (BF10 = 1.6). Presence of TDP-43 pathology does not confound the global amyloid PET-signal but has a selective effect on hippocampal PET-signal that appears only partially dependent on TDP-43 mediated atrophy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.