Abstract

The influence of sleep-disordered breathing (SDB) and sleep-related hypoxemia in SARS-CoV-2 viral infection and COVID-19 outcomes remains unknown. Controversy exists regarding whether to continue treatment for SDB with positive airway pressure given concern for aerosolization with limited data to inform professional society recommendations. To investigate the association of SDB (identified via polysomnogram) and sleep-related hypoxia with (1) SARS-CoV-2 positivity and (2) World Health Organization (WHO)-designated COVID-19 clinical outcomes while accounting for confounding including obesity, underlying cardiopulmonary disease, cancer, and smoking history. This case-control study was conducted within the Cleveland Clinic Health System (Ohio and Florida) and included all patients who were tested for COVID-19 between March 8 and November 30, 2020, and who had an available sleep study record. Sleep indices and SARS-CoV-2 positivity were assessed with overlap propensity score weighting, and COVID-19 clinical outcomes were assessed using the institutional registry. Sleep study-identified SDB (defined by frequency of apneas and hypopneas using the Apnea-Hypopnea Index [AHI]) and sleep-related hypoxemia (percentage of total sleep time at <90% oxygen saturation [TST <90]). Outcomes were SARS-CoV-2 infection and WHO-designated COVID-19 clinical outcomes (hospitalization, use of supplemental oxygen, noninvasive ventilation, mechanical ventilation or extracorporeal membrane oxygenation, and death). Of 350 710 individuals tested for SARS-CoV-2, 5402 (mean [SD] age, 56.4 [14.5] years; 3005 women [55.6%]) had a prior sleep study, of whom 1935 (35.8%) tested positive for SARS-CoV-2. Of the 5402 participants, 1696 were Black (31.4%), 3259 were White (60.3%), and 822 were of other race or ethnicity (15.2%). Patients who were positive vs negative for SARS-CoV-2 had a higher AHI score (median, 16.2 events/h [IQR, 6.1-39.5 events/h] vs 13.6 events/h [IQR, 5.5-33.6 events/h]; P < .001) and increased TST <90 (median, 1.8% sleep time [IQR, 0.10%-12.8% sleep time] vs 1.4% sleep time [IQR, 0.10%-10.8% sleep time]; P = .02). After overlap propensity score-weighted logistic regression, no SDB measures were associated with SARS-CoV-2 positivity. Median TST <90 was associated with the WHO-designated COVID-19 ordinal clinical outcome scale (adjusted odds ratio, 1.39; 95% CI, 1.10-1.74; P = .005). Time-to-event analyses showed sleep-related hypoxia associated with a 31% higher rate of hospitalization and mortality (adjusted hazard ratio, 1.31; 95% CI, 1.08-1.57; P = .005). In this case-control study, SDB and sleep-related hypoxia were not associated with increased SARS-CoV-2 positivity; however, once patients were infected with SARS-CoV-2, sleep-related hypoxia was an associated risk factor for detrimental COVID-19 outcomes.

Highlights

  • The COVID-19 pandemic continues to threaten billions of people worldwide

  • Median total sleep time (TST)

  • Association of Sleep-Related Hypoxia With COVID-19 Outcomes. In this case-control study, sleep-disordered breathing (SDB) and sleep-related hypoxia were not associated with increased SARS-CoV-2 positivity; once patients were infected with SARS-CoV-2, sleep-related hypoxia was an associated risk factor for detrimental COVID-19 outcomes

Read more

Summary

Introduction

The COVID-19 pandemic continues to threaten billions of people worldwide. Since the first case of COVID-19 infection was reported in the US, different mechanistic pathways have been purported for this highly variable disease, ranging from minimally symptomatic to severe respiratory failure and death. The reason for this variability remains unclear, several prognostic factors for COVID-19 infection and related morbidity have been described. Chronic comorbidities, such as diabetes, obesity, hypertension, and increasing age, are associated with greater risk for COVID-19 infection.[1,2] Likewise, hypoxemia, a pivotal pathophysiological consequence of COVID-19 pneumonitis,[3] is the cardinal reason for hospital admissions in COVID-19 disease, with mortality rates ranging from 40% to 80% among those admitted to the intensive care unit.[4,5]. SDB was often identified via diagnosis code in these studies or characterized by limited granularity of reported direct objective measures of SDB and hypoxemia severity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call