Abstract

Although leptospirosis is traditionally considered a disease of rural, agricultural and flooded environments, Leptospira spp. are found in a range of habitats and infect numerous host species, with rodents among the most significant reservoirs and vectors. To explore the local ecology of Leptospira spp. in a city experiencing rapid urbanization, we assessed Leptospira prevalence in rodents from three locations in Malaysian Borneo with differing levels of anthropogenic influence: 1) high but stable influence (urban); 2) moderate yet increasing (developing); and 3) low (rural). A total of 116 urban, 122 developing and 78 rural rodents were sampled, with the majority of individuals assigned to either the Rattus rattus lineage R3 (n = 165) or Sundamys muelleri (n = 100). Leptospira spp. DNA was detected in 31.6% of all rodents, with more urban rodents positive (44.8%), than developing (32.0%) or rural rodents (28.1%), and these differences were statistically significant. The majority of positive samples were identified by sequence comparison to belong to known human pathogens L. interrogans (n = 57) and L. borgpetersenii (n = 38). Statistical analyses revealed that both Leptospira species occurred more commonly at sites with higher anthropogenic influence, particularly those with a combination of commercial and residential activity, while L. interrogans infection was also associated with low forest cover, and L. borgpetersenii was more likely to be identified at sites without natural bodies of water. This study suggests that some features associated with urbanization may promote the circulation of Leptospira spp., resulting in a potential public health risk in cities that may be substantially underestimated.

Highlights

  • Leptospirosis is the most widespread zoonotic disease globally, with over a million cases of severe disease and around 60,000 deaths reported annually [1]

  • We found that 31.6% of all rodents were positive for Leptospira spp

  • Nine species from four genera were identified by COI sequence analysis, with most individuals classified as S. muelleri (n = 100 individuals) or as R. rattus R3 (n = 165), one of the lineages within the R. rattus super-group (Table 1) [40,41]

Read more

Summary

Introduction

Leptospirosis is the most widespread zoonotic disease globally, with over a million cases of severe disease and around 60,000 deaths reported annually [1]. The two species responsible for the majority of human infections, L. interrogans and L. borgpetersenii, differ in their transmission routes; L. interrogans remains viable for extended periods in aquatic or humid environments, whilst L. borgpetersenii, which has lost several genes related to environmental sensing, relies primarily on direct transmission between hosts [5]. These differences impact the ability of each species to persist in the environment and have led to differences in distribution and zoonotic potential [6]. Relatively little is known about the ecology and epidemiology of Leptospira spp. in urban environments, zoonotic transmission has been repeatedly documented and often associated with poor sanitation and slum conditions [11,12,13,14]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.