Abstract

The aim of the present study was to elucidate the roles of endothelium-derived hyperpolarizing factors (EDHFs) and nitric oxide (NO) in mediating the vasodilatation response to astragaloside IV and the effects of astragaloside IV on voltage-dependent Ca2+ channels and receptor-operated Ca2+ channels in rat thoracic aortic rings precontracted with potassium chloride (KCl; 60 mM) or phenylephrine (PHE; 1 µM). The results showed that astragaloside IV (1×10−4-3×10−1 g/l) concentration-dependently relaxed the contraction induced by KCl (10–90 mM) or PHE (1×10−9-3×10−5 µM) and inhibited concentration-contraction curves for the two vasoconstrictors in the aortic rings. Preincubation with Nω-nitro-L-arginine methyl ester (L-NAME, 100 µM) significantly attenuated astragaloside IV-induced relaxation in the endothelium-intact and -denuded arterial rings precontracted with PHE. Astragaloside IV, following preincubation with L-NAME (100 µM) plus indomethacin (10 µM), exerted vasodilatation, which was depressed by tetraethtylamine (1 mM) and propargylglycine (100 µM), but not by carbenoxolone (10 µM), catalase (500 U/ml) or proadifen hydrochloride (10 µM). The action mode of astragaloside IV was evident in comparison to nifedipine. Inhibition of PHE-induced contraction by astragaloside IV (100 mg/l) was more potent compared to inhibition of KCl-induced contraction, while inhibition of KCl-induced contraction by nifedipine (100 mg/l) was more potent compared to inhibition of PHE-induced contraction by nifedipine (100 mg/l). In addition, the combination of astragaloside IV and nifedipine exhibited synergistic and additive inhibitory effects on contraction evoked by KCl, which was similar to PHE. In conclusion, astragaloside IV, as a Ca2+ antagonist, relaxes the vessels through the blockade of superior receptor-operated Ca2+ and inferior voltage-dependent Ca2+ channels, which modulate NO from vascular endothelial cells and vascular smooth muscle cells, and EDHFs including K+ and hydrogen sulfide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.