Abstract

Imbalance or deficiencies of essential metals can lead to oxidative stress, that can damage mitochondrial DNA (mtDNA) molecule. Knowledge on effects of exposure to essential metals and their mixture remains limited. We aimed to evaluate individual and joint associations of prenatal essential metals with neonatal mtDNA copy number. We recruited 746 mother-newborn pairs from a birth cohort study conducted in Wuhan City, China, and collected trimester-specific urine and cord blood samples. We measured the concentrations of seven urinary essential metals, include zinc (Zn), iron (Fe), selenium (Se), cobalt (Co), manganese (Mn), copper (Cu), and chromium (Cr), using inductively coupled plasma mass spectrometry, and measured cord blood mtDNA copy number using real-time quantitative polymerase chain reaction. We estimated the trimester-specific associations of individual essential metal concentrations with mtDNA copy number using a multiple informant model, and assessed their joint association using weighted quantile sum (WQS) regression. For individual essential metal, a doubling of maternal urinary Zn concentrations during the second trimester was associated with a 7.47% (95% CI: 1.17–14.17%) higher level of neonatal mtDNA copy number. For the essential metal mixture, one-unit increased in the WQS index of the essential metals mixture during the second trimester resulted in a 10.41% (95% CI: 3.04–18.30%) increase in neonatal mtDNA copy number. Our findings suggest that exposure to both Zn and essential metal mixture during the second trimester is associated with a higher neonatal mtDNA copy number. Further research should assess whether mtDNA copy number is associated with child health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call